Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Cell Mol Med ; 24(19): 11603-11606, 2020 10.
Article in English | MEDLINE | ID: covidwho-884888

ABSTRACT

A novel pneumonia-associated respiratory syndrome named coronavirus disease-2019 (COVID-19), which was caused by SARS-CoV-2,broke out in Wuhan, China, in the end of 2019. Unfortunately, there is no specific antiviral agent or vaccine available to treat SARS-CoV-2 infections. The information regarding the immunological characteristics in COVID-19 patients remains limited. Here, we collected the blood samples from 18 healthy donors (HD) and 38 COVID-19 patients to analyze changes on γδ T cell population. In comparison with HD, the γδ T cell percentage decreased, while the activation marker CD25 expression increased in response to SARS-CoV-2 infection. Interestingly, the CD4 expression was upregulated in γδ T cells reflecting the occurrence of a specific effector cell population, which may serve as a biomarker for the assessment of SARS-CoV-2 infection.


Subject(s)
Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocyte Subsets/immunology , Adult , Betacoronavirus/physiology , Biomarkers , CD4 Antigens/metabolism , COVID-19 , China , Flow Cytometry , Humans , Immunity, Innate , Interleukin-2 Receptor alpha Subunit/metabolism , Pandemics , SARS-CoV-2 , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/metabolism
2.
J Cell Mol Med ; 24(21): 12457-12463, 2020 11.
Article in English | MEDLINE | ID: covidwho-796054

ABSTRACT

Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) has rapidly spread worldwide, threatening the health and lives of many people. Unfortunately, information regarding the immunological characteristics of COVID-19 patients remains limited. Herein, we collected blood samples from 18 healthy donors (HDs) and 38 COVID-19 patients to analyse changes in the adaptive immune cell populations and their phenotypes. We observed that the lymphocyte percentage moderately decreased, CD4 and CD8 T cell percentage among lymphocytes were similar, and B cell percentage was increased in COVID-19 patients in comparison to that in HDs. T cells, especially CD8 T cells, showed an enhanced expression of late activation marker CD25 and exhaustion marker PD-1. Importantly, SARS-CoV-2 infection increased the percentage of T follicular helper- and germinal centre B-like cells in the blood. The parameters in COVID-19 patients remained unchanged across various age groups. Therefore, we demonstrated that the T and B cells are activated naturally and are functional during SARS-CoV-2 infection. These data provide evidence that the adaptive immunity in most patients could be primed to induce a significant immune response against SARS-CoV-2 infection upon receiving standard medical care.


Subject(s)
Adaptive Immunity , COVID-19/immunology , Adult , Antigens, CD/metabolism , B-Lymphocytes/virology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/blood , Female , Humans , Immunophenotyping , Male , Programmed Cell Death 1 Receptor/metabolism , Receptors, CXCR5/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL